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Abstract

We investigate the partial linear spaces, fully embedded in an affine space AG(n, q) with the property
that for every antiflag {p, L}, the number of lines through p intersecting L is either 0, α, or q. Besides some
general results we prove a complete classification of those geometries fully embedded in an affine plane of
order q and of the connected geometries with 1 < α < q , fully embedded in AG(3, q).
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

A point-line geometry S = (P,L, I) is called a partial linear space if every two points are
incident with at most one line. It is said to be of order (s, t), if every line is incident with s + 1
points, while every point is on t + 1 lines. A partial linear space S = (P,L, I) is said to be of
antiflag class [α1, . . . , αm] if for every antiflag {p, L}, i.e. for every point p ∈ P and every line
L ∈ L, not through p, the so-called incidence number α(p, L) of lines of L through p which
intersect L is one of α1, . . . , αm . We do not require that every incidence number actually occurs.
If they do all occur then we say that the partial linear space is of antiflag type (α1, . . . , αm).
A partial linear space S = (P,L, I) is said to be fully embedded in an affine space AG(n, q),
also called an affine partial linear space, if L is a set of lines of AG(n, q), P is the set of all
affine points on the lines of S and I is the incidence of AG(n, q). We also require that P spans
AG(n, q).

Our goal is to investigate the connected affine partial linear spaces of antiflag class [0, α, q].
Actually, as every affine partial linear space S = (P,L, I) is defined by its line set L, the study
of affine partial linear spaces is equivalent to the study of subsets of the line set of AG(n, q). We
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say that L is a connected line set if S(L) is connected, and we will say that L is of antiflag class
[α1, . . . , αm] (or antiflag type (α1, . . . , αm)) if S(L) has this property.

We have the following interesting example in mind. Let Qn+1 be a nonsingular quadric in a
finite projective space PG(n + 1, q), n ≥ 3. Consider a point r 6∈ Qn+1, distinct from its nucleus
if n + 1 and q are even, and a hyperplane PG(n, q) not through r . Let Rn be the projection of
the quadric Qn+1 from the point r on the hyperplane PG(n, q); let Tn ⊆ Rn be the set of points
p of PG(n, q) such that the line 〈p, r〉 is a tangent to Qn+1 and let Pn = Rn \ Tn . We denote by
HTn the partial linear space whose points are the elements of Pn and whose lines are the lines of
PG(n, q) which contain q points of Pn . It is easy to check that this geometry HTn is of antiflag
class [0, 2, q]. Moreover, if q is even, Tn is the set of points of a hyperplane Π∞ of PG(n, q),
hence the geometry HTn is an affine partial linear space. If n is even, we write HT+

n if Qn+1 is a
nonsingular hyperbolic quadric, and HT−

n if Qn+1 is a nonsingular elliptic quadric.

2. Line sets of antiflag type [0, α, q] in an affine plane of order q

Clearly, a line set L of AG(n, q) is of antiflag class [0, α, q] if and only if for every affine
plane π , Lπ is of antiflag class [0, α, q]. Hence it is useful to investigate first the partial linear
spaces of antiflag class [0, α, q] embedded in an affine plane AG(2, q). In the next theorem we
give a complete classification for the planar case.

Theorem 2.1. If L is a nonempty line set of antiflag class [0, α, q] in an affine plane AG(2, q),
0 < α < q, then one of the following cases occurs.

1. L consists of a number of parallel lines, hence L is of antiflag type (0).
2. L consists of α + 1 parallel classes of lines, hence L is of antiflag type (α). We say that L is

a planar net of order q and degree α + 1.
3. α = 2, q = 2h , and L is an oval in the dual plane of AG(2, q), the nucleus being the line at

infinity, hence L is of antiflag type (0, 2). We say that L is a dual oval.
4. L consists of all lines of AG(2, q), hence L is of antiflag type (q).
5. α = 1 and L only contains lines of two parallel classes of lines, hence L is of antiflag

type (0, 1).
6. α = 1 and L only contains a number of lines through a given affine point, hence L is of

antiflag type (1).
7. α = q − 1 and L contains all lines of AG(2, q) except a number of parallel lines, hence L is

of antiflag type (q − 1, q).
8. α = q − 1 and L contains all lines of AG(2, q) except a number of lines through a given

affine point, hence L is of antiflag type (q − 1, q).

Proof. If L is of antiflag class [0, α] with α > 1, then it is shown in [4] that we are in case 1, 2 or
3. It is straightforward to show that line sets of antiflag class [0, 1, q] in an affine plane AG(2, q)

are necessarily the ones described in 1, 2, 4, 5 and 6.
So we may assume that q > 2 and that L is a line set in AG(2, q) of antiflag class [0, α, q]

with 1 < α < q and such that there is a point p and a line L ∈ L not through p such that
α(p, L) = q . Then every parallel class of lines contains at least one line of L.

For every affine point r , let tr + 1 be the number of lines of L through r . Let L ′ be the line
through p parallel to L , and let r 6= p be an affine point of L ′. Suppose that 0 < tr + 1 < q + 1.

As 0 < tr + 1, there is a line M ∈ L through r . Let M ′
6= M be a line of L parallel to M .

Then α(r, M ′) = tr . As tr + 1 < q + 1, tr + 1 ∈ {1, α + 1}.
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Since tr + 1 < q + 1, there is a line N 6∈ L through r . Let N ′
6= N be a line of L parallel to

N . Then α(r, N ′) = tr + 1. As 0 < tr + 1, tr + 1 ∈ {α, q}. Since 1 < α < q, we may conclude
that tr + 1 = q = α + 1. So α = q − 1.

Suppose that 1 < α < q − 1. Then for every affine point r 6= p of L ′, tr + 1 is either 0 or
q + 1. Suppose that tr + 1 = q + 1 for some point r 6= p of L ′. Then L ′

∈ L and hence every
affine point r ′

∈ L has tr ′ + 1 = q + 1, so we are in case 4. Suppose that tr + 1 = 0 for every
point r 6= p of L ′. Then the only lines of L which are not parallel to L are the lines through p
intersecting L in an affine point. Let r be an affine point not on L or L ′. Then the line 〈p, r〉 is
the only line of L through r intersecting L . So α(r, L) = 1, a contradiction.

Suppose that α = q − 1. If q = 3, one can easily show that only cases 7 and 8 occur. Suppose
that q > 3 and that r is an affine point on a line M ∈ L. Clearly there is a line M ′

∈ L not
containing r which intersects M in an affine point. Hence α(r, M ′) ≥ q − 1, so tr + 1 ≥ q − 1.
Suppose there is an affine point r such that tr + 1 = q − 1 and let L1, L2 be the lines through
r not in L. It is easy to show (note that q > 3) that there is a line L3 ∈ L not through r which
intersects both L1 and L2 in an affine point. We conclude that if q > 3, then every affine point
r has tr + 1 ∈ {0, q, q + 1}. It follows that if q > 3, through every affine point there are 0, 1 or
q + 1 lines which are not in L. And so we are in case 7 or 8. �

3. Some general results on affine line sets of antiflag class [0, α, q]

If S(L) is an affine partial linear space, then for every affine subspace U , let LU be the set
of lines of L in U , and let S(L)U be the partial linear space (PU ,LU , IU ), where PU = P ∩ U
and IU is the incidence I restricted to PU and LU . Note that S(L)U is not the same as S(LU ), as
S(L)U may contain isolated points, that is, points that are on no line, which is not the case for
S(LU ).

Highly irregular examples of connected line sets of antiflag class [0, 1, q] or [0, q − 1, q]

in AG(n, q) exist and are easy to construct. Therefore we restrict our attention from now on to
connected line sets of antiflag class [0, α, q] in AG(n, q), with 1 < α < q − 1.

Lemma 3.1. Let L be a line set of AG(n, q), n ≥ 3, of antiflag class [0, α, q], with 1 < α <

q − 1. Let π be an affine plane. Then one of the following cases occurs.

Type I. π does not contain any line of L.
Type II. π only contains a number of parallel lines of L.
Type III. Lπ is a planar net of order q and degree α + 1.
Type IV. α = 2, q = 2h and Lπ is a dual oval.
Type V. Lπ consists of all lines of π .

Proof. This follows immediately from Theorem 2.1. �

Let Π∞ denote the space at infinity of AG(n, q). For every point p on an element of a line set
L of AG(n, q), let θp denote the set of points at infinity of the lines of L through p.

Corollary 3.2. Let L be a connected line set of AG(n, q), n ≥ 3, of antiflag class [0, α, q], with
1 < α < q −1. Then there exists a positive integer t such that S(L) is of order (q −1, t). If U is
an affine subspace of dimension m ≥ 2, then every connected component L′ of LU is of antiflag
class [0, α, q], whence S(L′) has an order. If the lines of L span AG(n, q), then for every point
p of S(L), the set θp spans Π∞.
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Proof. Let p and r be distinct affine points on a line L ∈ L. It follows from Lemma 3.1 that in
every plane π through L , the numbers of lines of L through p and r are equal. Hence p and r
are on equally many lines of L. By connectedness, it follows that S(L) has an order.

The second statement is straightforward.
Suppose that L spans AG(n, q). Let p be a point of S(L), and suppose that θp is contained

in a proper subspace U∞ of Π∞. Let U = 〈p, U∞〉, and let L′ be the connected component
of LU which contains the lines of LU through p. Since θp ⊆ U∞, every line of L through p
is contained in U , and hence in L′. It follows that the order of S(L′) is the same as the order
of S(L). So for every affine point p′ on a line of L′, every line of L through p′ is in L′. Since
L is connected, this yields L′

= L. So L is contained in U , a proper subspace of AG(n, q), a
contradiction. �

4. Singular line sets of antiflag class [0, α, q]

A line set L of AG(n, q), or the affine partial linear space S(L), of antiflag class [0, α, q]

is said to be singular if there exists a point p∞ in the hyperplane at infinity Π∞ such that the
following conditions hold.

1. If p is a point of S(L), then the line 〈p, p∞〉 is in L.
2. If L ∈ L and L does not intersect Π∞ in the point p∞, then the plane 〈L , p∞〉 is of type V.

We will call every such point p∞, a singular point. Notice that the first condition is superfluous if
L does not contain any isolated lines (that is, connected components consisting of a single line).

An example of a singular line set of antiflag class [0, α, q] is the following. Let L′ be
a nonsingular line set of antiflag class [0, α, q] in a subspace U of AG(n, q) of dimension
2 ≤ m ≤ n −1, and let V∞ be a subspace of Π∞ of dimension n −m −1, skew to U ∩Π∞. Then
the line set L consisting of all the affine lines in the (n − m + 1)-spaces 〈L , V∞〉, with L ∈ L′,
is a singular line set of AG(n, q) of antiflag class [0, α, q]. The singular points are precisely the
points of V∞. The set L is connected if and only if L′ is connected; the lines of L span AG(n, q)

if and only if the lines of L′ span U . We say that L is the singular line set with vertex V∞ and
base L′.

Theorem 4.1. Let L be a singular connected line set of AG(n, q) of antiflag class [0, α, q],
1 < α < q −1, such that the lines of L span AG(n, q). Then either L is the set of all affine lines,
or it is the singular line set with vertex an (n − m − 1)-space V∞ ⊆ Π∞ and base a nonsingular
connected line set L′ of antiflag class [0, α, q] in an m-space U of AG(n, q), such that the lines
of L′ span U, U and V∞ are disjoint, and 2 ≤ m ≤ n − 1.

Proof. Let S∞ denote the set of singular points of L. We prove that S∞ is the point set of a
subspace of Π∞. Suppose that p∞ and p′

∞ are distinct points of S∞, let L∞ = 〈p∞, p′
∞〉 and

let L ∈ L. First suppose that L ∩ Π∞ 6∈ L∞. Let W be the 3-space 〈L , L∞〉. As p∞ and p′
∞

are singular points of L, they are also singular points of LW . So every affine line of the planes
π = 〈L , p∞〉 and π ′

= 〈L , p′
∞〉 is a line of LW . Consequently, for all affine lines M and

M ′ of the planes π and π ′ respectively, every affine line of the planes 〈M, p′
∞〉 and 〈M ′, p∞〉

respectively, is a line of LW . Hence LW is the set of all affine lines of W . In particular, for every
point p′′

∞ ∈ L∞, the plane π ′′
= 〈L , p′′

∞〉 is a plane of type V.
Now suppose that L intersects Π∞ in a point of the line L∞. Since p∞ and p′

∞ are singular
points, 〈L , L∞〉 is a plane of type V. It follows that every point p′′

∞ on the line L∞ = 〈p∞, p′
∞〉

is a singular point of L. Hence S∞ is the point set of an (n − m − 1)-space V∞ ⊆ Π∞,
0 ≤ m ≤ n − 1.
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If m = 0, then L is the set of all affine lines of AG(n, q). Suppose that m = 1. Then V∞ is
an (n − 2)-space of Π∞. As L is connected and not contained in a hyperplane, there is a line
L ∈ L which intersects Π∞ in a point p∞ 6∈ V∞. As we have shown above, for every 3-space
W = 〈L , L∞〉 with L∞ ⊆ V∞, LW is the set of all affine lines of W . It follows that L is the set
of all affine lines of AG(n, q). So every point of Π∞ is singular, a contradiction. Hence m 6= 1.

Suppose that m ≥ 2. Let U be any affine m-space skew to V∞. If LU has a singular point
p∞ ∈ U ∩ Π∞, then one easily proves that p∞ is a singular point of L. But p∞ 6∈ V∞, a
contradiction. So LU is nonsingular. An affine line L which intersects Π∞ in a point p∞ 6∈ V∞

is in L if and only if the projection of L from V∞ onto U is a line of LU . An affine line which
intersects Π∞ is a point p∞ ∈ V∞ is in L if and only if the point p = 〈L , V∞〉 ∩ U is a point of
S(LU ). It follows that L is the singular line set with vertex V∞ and base LU . As L is connected,
LU is connected. As the lines of L span AG(n, q), the lines of LU span U . As L is of antiflag
class [0, α, q], LU is of antiflag class [0, α, q]. �

5. Linear representations

Let Π∞ be a hyperplane of the projective space PG(n, q). The linear representation
T ∗

n−1(K∞) of a set K∞ ⊆ Π∞ is the affine partial linear space which has as line set the set
of all affine lines of AG(n, q) = PG(n, q) \ Π∞ intersecting Π∞ in a point of K∞. It is easy to
prove that T ∗

n−1(K∞) is connected if and only if the setK∞ spans Π∞. The line set of T ∗

n−1(K∞)

is of antiflag class [0, α, q] if and only if K∞ is a point set of class [0, 1, α + 1, q + 1], i.e., every
line of Π∞ intersects K∞ in either 0, 1, α + 1, or q + 1 points. It is easy to see that T ∗

n−1(K∞)

has no planes of type IV. The converse also holds.

Theorem 5.1. Let L be a connected line set of AG(n, q) of antiflag class [0, α, q], with
1 < α < q − 1, such that there are no planes of type IV, and such that the lines of L span
AG(n, q). Then L is the line set of a linear representation T ∗

n−1(K∞) of a point set K∞ of class
[0, 1, α + 1, q + 1].

Proof. If n = 2, the theorem holds by Lemma 3.1. Suppose that n > 2, and that the theorem
holds for all 2 ≤ m < n.

Let L0 ∈ L. We prove that every affine line parallel to L0 is in L. Let p be an affine point of
L0 and let p∞ = L0 ∩ Π∞. By Corollary 3.2, θp spans Π∞. Hence there is an (n − 2)-space
U∞ ⊆ Π∞ such that p∞ ∈ U∞ and θp ∩ U∞ spans U∞. Let U = 〈L , U∞〉 and let L′ be the
connected component of LU which contains the line L . Then L′ is a connected line set of U of
antiflag class [0, α, q] such that there are no planes of type IV, and such that the lines of L′ span
U . By the induction hypothesis, L′ is the line set of the linear representation of the set θp ∩ U∞.
So every affine line of U , parallel to L0, is a line of L.

Since θp spans Π∞, there is a line M ∈ L through p which intersects U in the point p. Let
U ′ be a hyperplane parallel to but distinct from U , and let p′

= M ∩ U ′. Let N be a line of
L′ through p, and let N ′ be the line through p′ parallel to N . The plane π = 〈M, N 〉 contains
two intersecting lines of L and hence is of type III, IV or V. By assumption, π is not of type IV.
Hence π is of type III or V, and so N ′ is a line of L. Hence for every point p′

∞ ∈ θp ∩ U∞, the
line N ′

= 〈p′, p′
∞〉 is in L. Hence θp ∩ U∞ ⊆ θp′ . Let L′′ be the connected component of LU ′

containing the lines of LU ′ through p′. Since θp ∩ U∞ spans U∞, θp′ ∩ U∞ spans U∞, and so
L′′ is a connected line set of U ′ of antiflag class [0, α, q] such that there are no planes of type
IV, and such that the lines of L′′ span U ′. By the induction hypothesis, L′′ is the line set of the
linear representation of the set θp′ ∩U∞. As p∞ ∈ θp ∩U∞ ⊆ θp′ ∩U∞, every line in U ′ which
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is parallel to L0, is a line of L′′ and so of L. Since this holds for every hyperplane U ′ parallel to
U , every affine line parallel to L0 is a line of L. Hence L is a union of parallel classes of lines.
Equivalently, L is the line set of a linear representation T ∗

n−1(K∞), where K∞ is a point set of
class [0, 1, α + 1, q + 1]. �

Remarks. 1. Theorem 5.1 is in fact a generalization of a similar result of De Clerck and
Delanote [4] about affine line sets of antiflag type (0, α), α > 1.

2. Let K∞ be a point set of class [0, 1, α + 1, q + 1] in Π∞. We say that K∞ is singular if it has
a singular point, that is, a point p∞ ∈ K∞ such that every line of Π∞ through p∞ is either
completely contained in K∞, or intersects K∞ in the point p∞ only. One verifies that p∞ is
a singular point of the line set of T ∗

n−1(K∞) if and only if p∞ is a singular point of K∞.

6. Line sets of antiflag type (0, α)

A (0, α)-geometry S is a connected partial linear space of order (s, t) and of antiflag type
(0, α).

If S is a (0, α)-geometry fully embedded in AG(n, q), then clearly the line set of S is a
connected line set of AG(n, q) of antiflag type (0, α). Conversely if α > 1 and L is a connected
line set of AG(n, q) of antiflag type (0, α) then one easily proves that there exists a positive
integer t such that S(L) is of order (q − 1, t).

So line sets of AG(n, q) of antiflag type (0, α), with α > 1, are equivalent to (0, α)-geometries
fully embedded in AG(n, q). The (0, α)-geometries with α > 1, fully embedded in AG(n, q) are
however classified. The most difficult part of the classification is the case α = 2, which was
completely solved by De Feyter in [7]. For an overview of the results of affine (0, α)-geometries
we refer to [2]. Only the following cases can occur.

1. LetK∞ be a set of type (1, α+1) or of type (0, 1, α+1) in Π∞. Then the linear representation
T ∗

n−1(K∞) is a (0, α)-geometry fully embedded in AG(n, q).
2. Let q be even, then the geometries HT3 and HT−

4 are affine (0, 2)-geometries. The geometry
HT3 is fully embedded in AG(3, q), q even. The geometry HT−

4 , which is also denoted
by TQ(4, q), is fully embedded in AG(4, q), q even. For a characterization theorem of the
geometry HT−

4 , we refer to [1].
In both cases, every affine plane is of type I, II or IV. So there are no planes of type III.

3. In [5], a (0, 2)-geometry A(O∞) fully embedded in AG(3, q), q even, is constructed as
follows. Let O∞ be an oval of Π∞ with nucleus n∞. Choose a basis such that Π∞ : X3 = 0,

n∞(1, 0, 0, 0) and (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 1, 0) ∈ O∞. Let f be the o-polynomial such
that

O∞ = {(ρ, f (ρ), 1, 0) | ρ ∈ GF(q)} ∪ {(0, 1, 0, 0)},

and for every affine point p(x, y, z, 1) let

O p
∞ = {(y + z f (ρ) + ρ, f (ρ), 1, 0) | ρ ∈ GF(q)} ∪ {(z, 1, 0, 0)}.

Let Sp be the set of lines through p and a point of O p
∞. LetL be the union of the sets Sp, for all

affine points p. If O∞ is not a conic then S(L) is connected [5] and we put A(O∞) = S(L).
If O∞ is a conic then S(L) consists of two connected components, both of which are
projectively equivalent with the geometry HT3 [5]. Therefore we put A(O∞) = HT3 if O∞

is a conic. In either case A(O∞) is a (0, 2)-geometry with s = q − 1, t = q, fully embedded
in AG(3, q). Every affine plane is a plane of type I, II or IV. So there are no planes of type III.
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4. In [6], a (0, 2)-geometry I(n, q, e) fully embedded in AG(n, q), n ≥ 3, q even, is constructed
as follows. Let U be a hyperplane of AG(n, q). Choose a basis such that Π∞ : Xn = 0
and U : Xn−1 = 0. Let e ∈ {1, 2, . . . , h − 1} be such that gcd(e, h) = 1, and let ϕ be the
collineation of PG(n, q) such that

ϕ : p(x0, x1, . . . , xn−1, xn) 7→ pϕ(x2e

0 , x2e

1 , . . . , x2e

n , x2e

n−1).

Put U∞ = U ∩ Π∞ and let K∞ be the set of points of U∞ fixed by ϕ. Then K∞ is the point
set of a projective geometry PG(n − 2, 2) ⊆ U∞. Let L be the set of affine lines L such that
either L ⊆ U and L ∩ Π∞ ∈ K∞, or L intersects U in an affine point p and L intersects Π∞

in the point pϕ . Then I(n, q, e) = S(L) is a (0, 2)-geometry with s = q − 1, t = 2n−1
− 1,

fully embedded in AG(n, q).
The hyperplane U has the property that, for every affine plane π containing two

intersecting lines of I(n, q, e), π is of type III if π ⊆ U and π is of type IV if π 6⊆ U .
In particular, if n = 3, then U is the only plane of type III.

5. A dual oval with nucleus the line at infinity is a trivial (0, 2)-geometry fully embedded in
AG(2, q), q even.

6. Any point set of AG(n, 2) gives rise to a trivial (0, 2)-geometry fully embedded in AG(n, 2).

7. The classification of connected line sets of antiflag class [0, α, q] in AG(3, q)

Let L be a line set of AG(n, q) of antiflag class [0, α, q]. Without loss of generality, we
may assume that L is not contained in a hyperplane of AG(n, q) and that L is connected. By
Theorems 5.1 and 4.1, we may assume that L is nonsingular and that there is a plane of type IV.
Hence α = 2 and q = 2h . As explained in the former section, the connected affine line sets of
antiflag type (0, α) are classified, hence we may assume that there exists an antiflag {p, L} such
that α(p, L) = q , i.e., we may assume that there is at least one plane of type V.

The next step towards a complete classification of affine line sets of antiflag class [0, α, q] is
to find connected line sets or geometries fully embedded in AG(3, q), of antiflag type (0, 2, q),
q = 2h , h > 1, such that there is at least a plane of type IV and one of type V.

Theorem 7.1. A nonsingular connected line set of AG(3, q), q = 2h , h > 1, of antiflag type
(0, 2, q), such that there is a plane of type IV and a plane of type V, does not exist.

Proof. Suppose that such a set L does exist. Let π1 be a plane of type V. Suppose that no plane
intersecting π1 in an affine line, is of type V. Let π be a plane parallel to but distinct from π1.
We prove that π is of type V.

Let m be the number of points of S(L) on π . Then m > 0 since otherwise every line of L is
parallel to π , a contradiction. Let p be a point of S(L) in π , and let S1 be the set of affine points
of π1 that are collinear to p in S(L). Then S1 is a point set of type (0, 2, q) in π1. If there is an
affine line L ⊆ π1 containing q points of S1, then the plane 〈p, L〉 is of type V, a contradiction.
So S1 is a point set of type (0, 2), and so it is a hyperoval (S1 6= ∅ since θp spans Π∞).

By Corollary 3.2, S(L) has an order (q − 1, t). Every point of S(L) in π is contained in
precisely q + 2 lines of L which intersect π1 in an affine point. Counting the lines of L which
intersect π and π1 in an affine point yields m(q + 2) = q2(t − q). It follows that 1

2 q + 1 | t − q.
As 0 < m ≤ q2, there are only two possibilities.

1. t −q =
1
2 q + 1. Then every point of S(L) in π is contained in precisely t + 1 − (q + 2) =

1
2 q

lines of Lπ . Hence q = 4 and π is a plane of type IV. But this contradicts m =
1
2 q2.
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2. t −q = q +2. Then every point of S(L) in π is contained in precisely t +1− (q +2) = q +1
lines of Lπ , and m = q2. Hence π is a plane of type V.

It follows that every plane parallel to π1 is of type V. But this contradicts the fact that there is a
plane of type IV. We conclude that there is a plane π2 of type V which intersects π1 in an affine
line L0.

Let p∞ = L0 ∩ Π∞. Let L be a line of L which intersects π1 and π2 in distinct affine points
p1 and p2 respectively. We prove that the plane π = 〈L , p∞〉 is of type V. Let S1 denote the
set of affine points of π1 that are collinear to p2 in S(L). Then S1 is a point set of type (0, 2, q)

which contains p1 and the affine points of L0. Hence either S1 is the set of all affine points of π1,
or S1 consists of the affine points of the lines L0 and L1 = 〈p1, p∞〉. In both cases, π is a plane
of type V.

Let π ′ be a plane through L , not parallel to the line L0. Then π ′ contains three nonconcurrent
lines of L, namely L , π ′

∩ π1 and π ′
∩ π2. So π ′ is of type III, IV or V. Now applying the

same reasoning as above, one can prove that for every line L ′
∈ Lπ ′ , the plane 〈L ′, p∞〉 is of

type V, and hence that p∞ is a singular point of L. But this contradicts our assumption that L is
nonsingular. �

Theorem 7.2. Let L be a connected line set of AG(3, q) of antiflag class [0, α, q], 1 < α <

q − 1. Then one of the following cases occurs.

1. q = 2h , α = 2 and L is the line set of the geometry A(O∞) (we recall that HT3 = A(O∞),
O∞ a conic).

2. q = 2h , α = 2 and L is the line set of the geometry I(3, q, e).
3. L is the line set of a linear representation T ∗

2 (K∞), with K∞ a nonsingular point set of class
[0, 1, α + 1, q + 1] in Π∞.

4. L is the singular line set with vertex a point p∞ ∈ Π∞ and base a planar net in an affine
plane skew to p∞.

5. q = 2h , α = 2 and L is the singular line set with vertex a point p∞ ∈ Π∞ and base a dual
oval in an affine plane skew to p∞.

6. L is the set of all lines of AG(3, q).

Proof. This follows immediately from Theorems 4.1 and 5.1, from Section 6 and from
Theorem 7.1. �

Towards the complete classification

In a forthcoming paper [3] we will provide a complete classification of connected affine partial
linear spaces of antiflag class [0, 2, q] that are not linear representations of point sets of class
[0, 1, 3, q + 1] in the space at infinity Π∞.
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