

European Journal of Combinatorics

European Journal of Combinatorics 29 (2008) 1427-1435

www.elsevier.com/locate/ejc

On connected line sets of antiflag class $[0, \alpha, q]$ in AG(n, q)

F. De Clerck, N. De Feyter

Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281-S22, B-9000 Gent, Belgium

Available online 20 August 2007

Abstract

We investigate the partial linear spaces, fully embedded in an affine space AG(n,q) with the property that for every antiflag $\{p,L\}$, the number of lines through p intersecting L is either $0,\alpha$, or q. Besides some general results we prove a complete classification of those geometries fully embedded in an affine plane of order q and of the connected geometries with $1 < \alpha < q$, fully embedded in AG(3,q). © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

A point-line geometry $S = (P, \mathcal{L}, I)$ is called a *partial linear space* if every two points are incident with at most one line. It is said to be of order (s, t), if every line is incident with s + 1 points, while every point is on t + 1 lines. A partial linear space $S = (P, \mathcal{L}, I)$ is said to be of *antiflag class* $[\alpha_1, \ldots, \alpha_m]$ if for every antiflag $\{p, L\}$, i.e. for every point $p \in P$ and every line $L \in \mathcal{L}$, not through p, the so-called *incidence number* $\alpha(p, L)$ of lines of \mathcal{L} through p which intersect p is one of p, p, where p is do not require that every incidence number actually occurs. If they do all occur then we say that the partial linear space is of *antiflag type* $(\alpha_1, \ldots, \alpha_m)$. A partial linear space p is said to be *fully embedded* in an affine space p is the set of all affine points on the lines of p and p is the incidence of p in p. We also require that p spans p and p is the incidence of p and p is the set of all affine points on the lines of p and p is the incidence of p and p is the set of all affine points on the lines of p and p is the incidence of p and p is the set of all affine points on the lines of p and p is the incidence of p and p is the set of all affine points on the lines of p and p is the incidence of p and p is the set of all affine points on the lines of p and p is the incidence of p and p is the set of all affine points on the lines of p and p is the incidence of p and p is the set of all affine points on the lines of p and p is the incidence of p and p is the set of all affine points on the lines of p and p is the incidence of p and p is the incidence of p and p is the set of p and p is

Our goal is to investigate the connected affine partial linear spaces of antiflag class $[0, \alpha, q]$. Actually, as every affine partial linear space $S = (\mathcal{P}, \mathcal{L}, I)$ is defined by its line set \mathcal{L} , the study of affine partial linear spaces is equivalent to the study of subsets of the line set of AG(n, q). We

E-mail addresses: fdc@cage.UGent.be (F. De Clerck), ndfeyter@cage.UGent.be (N. De Feyter).

say that \mathcal{L} is a connected line set if $\mathcal{S}(\mathcal{L})$ is connected, and we will say that \mathcal{L} is of antiflag class $[\alpha_1, \ldots, \alpha_m]$ (or antiflag type $(\alpha_1, \ldots, \alpha_m)$) if $\mathcal{S}(\mathcal{L})$ has this property.

We have the following interesting example in mind. Let \mathcal{Q}_{n+1} be a nonsingular quadric in a finite projective space $\operatorname{PG}(n+1,q), n \geq 3$. Consider a point $r \notin \mathcal{Q}_{n+1}$, distinct from its nucleus if n+1 and q are even, and a hyperplane $\operatorname{PG}(n,q)$ not through r. Let \mathcal{R}_n be the projection of the quadric \mathcal{Q}_{n+1} from the point r on the hyperplane $\operatorname{PG}(n,q)$; let $\mathcal{T}_n \subseteq \mathcal{R}_n$ be the set of points p of $\operatorname{PG}(n,q)$ such that the line $\langle p,r \rangle$ is a tangent to \mathcal{Q}_{n+1} and let $\mathcal{P}_n = \mathcal{R}_n \setminus \mathcal{T}_n$. We denote by HT_n the partial linear space whose points are the elements of \mathcal{P}_n and whose lines are the lines of $\operatorname{PG}(n,q)$ which contain q points of \mathcal{P}_n . It is easy to check that this geometry HT_n is of antiflag class [0,2,q]. Moreover, if q is even, \mathcal{T}_n is the set of points of a hyperplane \mathcal{H}_∞ of $\operatorname{PG}(n,q)$, hence the geometry HT_n is an affine partial linear space. If n is even, we write HT_n^+ if \mathcal{Q}_{n+1} is a nonsingular hyperbolic quadric, and HT_n^- if \mathcal{Q}_{n+1} is a nonsingular elliptic quadric.

2. Line sets of antiflag type $[0, \alpha, q]$ in an affine plane of order q

Clearly, a line set \mathcal{L} of AG(n,q) is of antiflag class $[0,\alpha,q]$ if and only if for every affine plane π , \mathcal{L}_{π} is of antiflag class $[0,\alpha,q]$. Hence it is useful to investigate first the partial linear spaces of antiflag class $[0,\alpha,q]$ embedded in an affine plane AG(2,q). In the next theorem we give a complete classification for the planar case.

Theorem 2.1. If \mathcal{L} is a nonempty line set of antiflag class $[0, \alpha, q]$ in an affine plane AG(2, q), $0 < \alpha < q$, then one of the following cases occurs.

- 1. \mathcal{L} consists of a number of parallel lines, hence \mathcal{L} is of antiflag type (0).
- 2. \mathcal{L} consists of $\alpha+1$ parallel classes of lines, hence \mathcal{L} is of antiflag type (α). We say that \mathcal{L} is a planar net of order q and degree $\alpha+1$.
- 3. $\alpha = 2$, $q = 2^h$, and \mathcal{L} is an oval in the dual plane of AG(2, q), the nucleus being the line at infinity, hence \mathcal{L} is of antiflag type (0, 2). We say that \mathcal{L} is a dual oval.
- 4. \mathcal{L} consists of all lines of AG(2, q), hence \mathcal{L} is of antiflag type (q).
- 5. $\alpha = 1$ and \mathcal{L} only contains lines of two parallel classes of lines, hence \mathcal{L} is of antiflag type (0, 1).
- 6. $\alpha = 1$ and \mathcal{L} only contains a number of lines through a given affine point, hence \mathcal{L} is of antiflag type (1).
- 7. $\alpha = q 1$ and \mathcal{L} contains all lines of AG(2, q) except a number of parallel lines, hence \mathcal{L} is of antiflag type (q 1, q).
- 8. $\alpha = q 1$ and \mathcal{L} contains all lines of AG(2, q) except a number of lines through a given affine point, hence \mathcal{L} is of antiflag type (q 1, q).

Proof. If \mathcal{L} is of antiflag class $[0, \alpha]$ with $\alpha > 1$, then it is shown in [4] that we are in case 1, 2 or 3. It is straightforward to show that line sets of antiflag class [0, 1, q] in an affine plane AG(2, q) are necessarily the ones described in 1, 2, 4, 5 and 6.

So we may assume that q>2 and that \mathcal{L} is a line set in AG(2,q) of antiflag class $[0,\alpha,q]$ with $1<\alpha< q$ and such that there is a point p and a line $L\in\mathcal{L}$ not through p such that $\alpha(p,L)=q$. Then every parallel class of lines contains at least one line of \mathcal{L} .

For every affine point r, let $t_r + 1$ be the number of lines of \mathcal{L} through r. Let L' be the line through p parallel to L, and let $r \neq p$ be an affine point of L'. Suppose that $0 < t_r + 1 < q + 1$.

As $0 < t_r + 1$, there is a line $M \in \mathcal{L}$ through r. Let $M' \neq M$ be a line of \mathcal{L} parallel to M. Then $\alpha(r, M') = t_r$. As $t_r + 1 < q + 1$, $t_r + 1 \in \{1, \alpha + 1\}$.

Since $t_r + 1 < q + 1$, there is a line $N \notin \mathcal{L}$ through r. Let $N' \neq N$ be a line of \mathcal{L} parallel to N. Then $\alpha(r, N') = t_r + 1$. As $0 < t_r + 1$, $t_r + 1 \in \{\alpha, q\}$. Since $1 < \alpha < q$, we may conclude that $t_r + 1 = q = \alpha + 1$. So $\alpha = q - 1$.

Suppose that $1 < \alpha < q - 1$. Then for every affine point $r \neq p$ of L', $t_r + 1$ is either 0 or q + 1. Suppose that $t_r + 1 = q + 1$ for some point $r \neq p$ of L'. Then $L' \in \mathcal{L}$ and hence every affine point $r' \in L$ has $t_{r'} + 1 = q + 1$, so we are in case 4. Suppose that $t_r + 1 = 0$ for every point $r \neq p$ of L'. Then the only lines of \mathcal{L} which are not parallel to L are the lines through p intersecting L in an affine point. Let r be an affine point not on L or L'. Then the line (p, r) is the only line of \mathcal{L} through r intersecting L. So $\alpha(r, L) = 1$, a contradiction.

Suppose that $\alpha = q - 1$. If q = 3, one can easily show that only cases 7 and 8 occur. Suppose that q > 3 and that r is an affine point on a line $M \in \mathcal{L}$. Clearly there is a line $M' \in \mathcal{L}$ not containing r which intersects M in an affine point. Hence $\alpha(r, M') \ge q - 1$, so $t_r + 1 \ge q - 1$. Suppose there is an affine point r such that $t_r + 1 = q - 1$ and let L_1, L_2 be the lines through r not in \mathcal{L} . It is easy to show (note that q > 3) that there is a line $L_3 \in \mathcal{L}$ not through r which intersects both L_1 and L_2 in an affine point. We conclude that if q > 3, then every affine point r has $t_r + 1 \in \{0, q, q + 1\}$. It follows that if q > 3, through every affine point there are 0, 1 or q + 1 lines which are not in \mathcal{L} . And so we are in case 7 or 8. \square

3. Some general results on affine line sets of antiflag class $[0, \alpha, q]$

If $\mathcal{S}(\mathcal{L})$ is an affine partial linear space, then for every affine subspace U, let \mathcal{L}_U be the set of lines of \mathcal{L} in U, and let $\mathcal{S}(\mathcal{L})_U$ be the partial linear space $(\mathcal{P}_U, \mathcal{L}_U, I_U)$, where $\mathcal{P}_U = \mathcal{P} \cap U$ and I_U is the incidence I restricted to \mathcal{P}_U and \mathcal{L}_U . Note that $\mathcal{S}(\mathcal{L})_U$ is not the same as $\mathcal{S}(\mathcal{L}_U)$, as $\mathcal{S}(\mathcal{L})_U$ may contain isolated points, that is, points that are on no line, which is not the case for $\mathcal{S}(\mathcal{L}_U)$.

Highly irregular examples of connected line sets of antiflag class [0, 1, q] or [0, q - 1, q] in AG(n, q) exist and are easy to construct. Therefore we restrict our attention from now on to connected line sets of antiflag class $[0, \alpha, q]$ in AG(n, q), with $1 < \alpha < q - 1$.

Lemma 3.1. Let \mathcal{L} be a line set of AG(n, q), $n \geq 3$, of antiflag class $[0, \alpha, q]$, with $1 < \alpha < q - 1$. Let π be an affine plane. Then one of the following cases occurs.

Type I. π *does not contain any line of* \mathcal{L} .

Type II. π only contains a number of parallel lines of \mathcal{L} .

Type III. \mathcal{L}_{π} *is a planar net of order q and degree* $\alpha + 1$.

Type IV. $\alpha = 2$, $q = 2^h$ and \mathcal{L}_{π} is a dual oval.

Type V. \mathcal{L}_{π} consists of all lines of π .

Proof. This follows immediately from Theorem 2.1. \square

Let Π_{∞} denote the space at infinity of AG(n, q). For every point p on an element of a line set \mathcal{L} of AG(n, q), let θ_p denote the set of points at infinity of the lines of \mathcal{L} through p.

Corollary 3.2. Let \mathcal{L} be a connected line set of AG(n,q), $n \geq 3$, of antiflag class $[0,\alpha,q]$, with $1 < \alpha < q-1$. Then there exists a positive integer t such that $\mathcal{S}(\mathcal{L})$ is of order (q-1,t). If U is an affine subspace of dimension $m \geq 2$, then every connected component \mathcal{L}' of \mathcal{L}_U is of antiflag class $[0,\alpha,q]$, whence $\mathcal{S}(\mathcal{L}')$ has an order. If the lines of \mathcal{L} span AG(n,q), then for every point p of $\mathcal{S}(\mathcal{L})$, the set θ_p spans Π_{∞} .

Proof. Let p and r be distinct affine points on a line $L \in \mathcal{L}$. It follows from Lemma 3.1 that in every plane π through L, the numbers of lines of \mathcal{L} through p and r are equal. Hence p and r are on equally many lines of \mathcal{L} . By connectedness, it follows that $\mathcal{S}(\mathcal{L})$ has an order.

The second statement is straightforward.

Suppose that \mathcal{L} spans $\mathrm{AG}(n,q)$. Let p be a point of $\mathcal{S}(\mathcal{L})$, and suppose that θ_p is contained in a proper subspace U_∞ of Π_∞ . Let $U=\langle p,U_\infty\rangle$, and let \mathcal{L}' be the connected component of \mathcal{L}_U which contains the lines of \mathcal{L}_U through p. Since $\theta_p\subseteq U_\infty$, every line of \mathcal{L} through p is contained in U, and hence in \mathcal{L}' . It follows that the order of $\mathcal{S}(\mathcal{L}')$ is the same as the order of $\mathcal{S}(\mathcal{L})$. So for every affine point p' on a line of \mathcal{L}' , every line of \mathcal{L} through p' is in \mathcal{L}' . Since \mathcal{L} is connected, this yields $\mathcal{L}'=\mathcal{L}$. So \mathcal{L} is contained in U, a proper subspace of $\mathrm{AG}(n,q)$, a contradiction. \square

4. Singular line sets of antiflag class $[0, \alpha, q]$

A line set \mathcal{L} of AG(n,q), or the affine partial linear space $\mathcal{S}(\mathcal{L})$, of antiflag class $[0,\alpha,q]$ is said to be *singular* if there exists a point p_{∞} in the hyperplane at infinity Π_{∞} such that the following conditions hold.

- 1. If p is a point of $S(\mathcal{L})$, then the line $\langle p, p_{\infty} \rangle$ is in \mathcal{L} .
- 2. If $L \in \mathcal{L}$ and L does not intersect Π_{∞} in the point p_{∞} , then the plane (L, p_{∞}) is of type V.

We will call every such point p_{∞} , a *singular point*. Notice that the first condition is superfluous if \mathcal{L} does not contain any isolated lines (that is, connected components consisting of a single line).

An example of a singular line set of antiflag class $[0, \alpha, q]$ is the following. Let \mathcal{L}' be a nonsingular line set of antiflag class $[0, \alpha, q]$ in a subspace U of $\mathrm{AG}(n,q)$ of dimension $2 \leq m \leq n-1$, and let V_{∞} be a subspace of H_{∞} of dimension n-m-1, skew to $U \cap H_{\infty}$. Then the line set \mathcal{L} consisting of all the affine lines in the (n-m+1)-spaces $\langle L, V_{\infty} \rangle$, with $L \in \mathcal{L}'$, is a singular line set of $\mathrm{AG}(n,q)$ of antiflag class $[0,\alpha,q]$. The singular points are precisely the points of V_{∞} . The set \mathcal{L} is connected if and only if \mathcal{L}' is connected; the lines of \mathcal{L} span $\mathrm{AG}(n,q)$ if and only if the lines of \mathcal{L}' span U. We say that \mathcal{L} is the singular line set with vertex V_{∞} and base \mathcal{L}' .

Theorem 4.1. Let \mathcal{L} be a singular connected line set of AG(n,q) of antiflag class $[0,\alpha,q]$, $1<\alpha< q-1$, such that the lines of \mathcal{L} span AG(n,q). Then either \mathcal{L} is the set of all affine lines, or it is the singular line set with vertex an (n-m-1)-space $V_{\infty}\subseteq \Pi_{\infty}$ and base a nonsingular connected line set \mathcal{L}' of antiflag class $[0,\alpha,q]$ in an m-space U of AG(n,q), such that the lines of \mathcal{L}' span U, U and V_{∞} are disjoint, and $2 \le m \le n-1$.

Proof. Let S_{∞} denote the set of singular points of \mathcal{L} . We prove that S_{∞} is the point set of a subspace of Π_{∞} . Suppose that p_{∞} and p'_{∞} are distinct points of S_{∞} , let $L_{\infty} = \langle p_{\infty}, p'_{\infty} \rangle$ and let $L \in \mathcal{L}$. First suppose that $L \cap \Pi_{\infty} \not\in L_{\infty}$. Let W be the 3-space $\langle L, L_{\infty} \rangle$. As p_{∞} and p'_{∞} are singular points of \mathcal{L} , they are also singular points of \mathcal{L}_W . So every affine line of the planes $\pi = \langle L, p_{\infty} \rangle$ and $\pi' = \langle L, p'_{\infty} \rangle$ is a line of \mathcal{L}_W . Consequently, for all affine lines M and M' of the planes π and π' respectively, every affine line of the planes $\langle M, p'_{\infty} \rangle$ and $\langle M', p_{\infty} \rangle$ respectively, is a line of \mathcal{L}_W . Hence \mathcal{L}_W is the set of all affine lines of W. In particular, for every point $p''_{\infty} \in L_{\infty}$, the plane $\pi'' = \langle L, p''_{\infty} \rangle$ is a plane of type V.

Now suppose that L intersects Π_{∞} in a point of the line L_{∞} . Since p_{∞} and p'_{∞} are singular points, $\langle L, L_{\infty} \rangle$ is a plane of type V. It follows that every point p''_{∞} on the line $L_{\infty} = \langle p_{\infty}, p'_{\infty} \rangle$ is a singular point of \mathcal{L} . Hence S_{∞} is the point set of an (n-m-1)-space $V_{\infty} \subseteq \Pi_{\infty}$, $0 \le m \le n-1$.

If m=0, then \mathcal{L} is the set of all affine lines of $\mathrm{AG}(n,q)$. Suppose that m=1. Then V_{∞} is an (n-2)-space of Π_{∞} . As \mathcal{L} is connected and not contained in a hyperplane, there is a line $L \in \mathcal{L}$ which intersects Π_{∞} in a point $p_{\infty} \notin V_{\infty}$. As we have shown above, for every 3-space $W = \langle L, L_{\infty} \rangle$ with $L_{\infty} \subseteq V_{\infty}$, \mathcal{L}_W is the set of all affine lines of W. It follows that \mathcal{L} is the set of all affine lines of $\mathrm{AG}(n,q)$. So every point of Π_{∞} is singular, a contradiction. Hence $m \neq 1$.

Suppose that $m \geq 2$. Let U be any affine m-space skew to V_{∞} . If \mathcal{L}_U has a singular point $p_{\infty} \in U \cap \Pi_{\infty}$, then one easily proves that p_{∞} is a singular point of \mathcal{L} . But $p_{\infty} \notin V_{\infty}$, a contradiction. So \mathcal{L}_U is nonsingular. An affine line L which intersects Π_{∞} in a point $p_{\infty} \notin V_{\infty}$ is in \mathcal{L} if and only if the projection of L from V_{∞} onto U is a line of \mathcal{L}_U . An affine line which intersects Π_{∞} is a point $p_{\infty} \in V_{\infty}$ is in \mathcal{L} if and only if the point $p = \langle L, V_{\infty} \rangle \cap U$ is a point of $\mathcal{S}(\mathcal{L}_U)$. It follows that \mathcal{L} is the singular line set with vertex V_{∞} and base \mathcal{L}_U . As \mathcal{L} is connected, \mathcal{L}_U is connected. As the lines of \mathcal{L} span $\mathcal{A}G(n,q)$, the lines of \mathcal{L}_U span U. As \mathcal{L} is of antiflag class $[0,\alpha,q]$, \mathcal{L}_U is of antiflag class $[0,\alpha,q]$. \square

5. Linear representations

Let Π_{∞} be a hyperplane of the projective space $\mathrm{PG}(n,q)$. The *linear representation* $T_{n-1}^*(\mathcal{K}_{\infty})$ of a set $\mathcal{K}_{\infty}\subseteq \Pi_{\infty}$ is the affine partial linear space which has as line set the set of all affine lines of $\mathrm{AG}(n,q)=\mathrm{PG}(n,q)\setminus \Pi_{\infty}$ intersecting Π_{∞} in a point of \mathcal{K}_{∞} . It is easy to prove that $T_{n-1}^*(\mathcal{K}_{\infty})$ is connected if and only if the set \mathcal{K}_{∞} spans Π_{∞} . The line set of $T_{n-1}^*(\mathcal{K}_{\infty})$ is of antiflag class $[0,\alpha,q]$ if and only if \mathcal{K}_{∞} is a point set of class $[0,1,\alpha+1,q+1]$, i.e., every line of Π_{∞} intersects \mathcal{K}_{∞} in either $0,1,\alpha+1$, or q+1 points. It is easy to see that $T_{n-1}^*(\mathcal{K}_{\infty})$ has no planes of type IV. The converse also holds.

Theorem 5.1. Let \mathcal{L} be a connected line set of AG(n,q) of antiflag class $[0,\alpha,q]$, with $1 < \alpha < q - 1$, such that there are no planes of type IV, and such that the lines of \mathcal{L} span AG(n,q). Then \mathcal{L} is the line set of a linear representation $T_{n-1}^*(\mathcal{K}_{\infty})$ of a point set \mathcal{K}_{∞} of class $[0,1,\alpha+1,q+1]$.

Proof. If n = 2, the theorem holds by Lemma 3.1. Suppose that n > 2, and that the theorem holds for all $2 \le m < n$.

Let $L_0 \in \mathcal{L}$. We prove that every affine line parallel to L_0 is in \mathcal{L} . Let p be an affine point of L_0 and let $p_\infty = L_0 \cap \Pi_\infty$. By Corollary 3.2, θ_p spans Π_∞ . Hence there is an (n-2)-space $U_\infty \subseteq \Pi_\infty$ such that $p_\infty \in U_\infty$ and $\theta_p \cap U_\infty$ spans U_∞ . Let $U = \langle L, U_\infty \rangle$ and let \mathcal{L}' be the connected component of \mathcal{L}_U which contains the line L. Then \mathcal{L}' is a connected line set of U of antiflag class $[0, \alpha, q]$ such that there are no planes of type IV, and such that the lines of \mathcal{L}' span U. By the induction hypothesis, \mathcal{L}' is the line set of the linear representation of the set $\theta_p \cap U_\infty$. So every affine line of U, parallel to L_0 , is a line of \mathcal{L} .

Since θ_p spans Π_∞ , there is a line $M \in \mathcal{L}$ through p which intersects U in the point p. Let U' be a hyperplane parallel to but distinct from U, and let $p' = M \cap U'$. Let N be a line of \mathcal{L}' through p, and let N' be the line through p' parallel to N. The plane $\pi = \langle M, N \rangle$ contains two intersecting lines of \mathcal{L} and hence is of type III, IV or V. By assumption, π is not of type IV. Hence π is of type III or V, and so N' is a line of \mathcal{L} . Hence for every point $p'_\infty \in \theta_p \cap U_\infty$, the line $N' = \langle p', p'_\infty \rangle$ is in \mathcal{L} . Hence $\theta_p \cap U_\infty \subseteq \theta_{p'}$. Let \mathcal{L}'' be the connected component of $\mathcal{L}_{U'}$ containing the lines of $\mathcal{L}_{U'}$ through p'. Since $\theta_p \cap U_\infty$ spans U_∞ , $\theta_{p'} \cap U_\infty$ spans U_∞ , and so \mathcal{L}'' is a connected line set of U' of antiflag class $[0, \alpha, q]$ such that there are no planes of type IV, and such that the lines of \mathcal{L}'' span U'. By the induction hypothesis, \mathcal{L}'' is the line set of the linear representation of the set $\theta_{p'} \cap U_\infty$. As $p_\infty \in \theta_p \cap U_\infty \subseteq \theta_{p'} \cap U_\infty$, every line in U' which

is parallel to L_0 , is a line of \mathcal{L}'' and so of \mathcal{L} . Since this holds for every hyperplane U' parallel to U, every affine line parallel to L_0 is a line of \mathcal{L} . Hence \mathcal{L} is a union of parallel classes of lines. Equivalently, \mathcal{L} is the line set of a linear representation $T_{n-1}^*(\mathcal{K}_{\infty})$, where \mathcal{K}_{∞} is a point set of class $[0, 1, \alpha + 1, q + 1]$. \square

Remarks. 1. Theorem 5.1 is in fact a generalization of a similar result of De Clerck and Delanote [4] about affine line sets of antiflag type $(0, \alpha)$, $\alpha > 1$.

2. Let \mathcal{K}_{∞} be a point set of class $[0, 1, \alpha + 1, q + 1]$ in Π_{∞} . We say that \mathcal{K}_{∞} is *singular* if it has a *singular point*, that is, a point $p_{\infty} \in \mathcal{K}_{\infty}$ such that every line of Π_{∞} through p_{∞} is either completely contained in \mathcal{K}_{∞} , or intersects \mathcal{K}_{∞} in the point p_{∞} only. One verifies that p_{∞} is a singular point of the line set of $T_{n-1}^*(\mathcal{K}_{\infty})$ if and only if p_{∞} is a singular point of \mathcal{K}_{∞} .

6. Line sets of antiflag type $(0, \alpha)$

A $(0, \alpha)$ -geometry S is a connected partial linear space of order (s, t) and of antiflag type $(0, \alpha)$.

If S is a $(0, \alpha)$ -geometry fully embedded in AG(n, q), then clearly the line set of S is a connected line set of AG(n, q) of antiflag type $(0, \alpha)$. Conversely if $\alpha > 1$ and \mathcal{L} is a connected line set of AG(n, q) of antiflag type $(0, \alpha)$ then one easily proves that there exists a positive integer t such that $S(\mathcal{L})$ is of order (q - 1, t).

So line sets of AG(n,q) of antiflag type $(0,\alpha)$, with $\alpha>1$, are equivalent to $(0,\alpha)$ -geometries fully embedded in AG(n,q). The $(0,\alpha)$ -geometries with $\alpha>1$, fully embedded in AG(n,q) are however classified. The most difficult part of the classification is the case $\alpha=2$, which was completely solved by De Feyter in [7]. For an overview of the results of affine $(0,\alpha)$ -geometries we refer to [2]. Only the following cases can occur.

- 1. Let \mathcal{K}_{∞} be a set of type $(1, \alpha+1)$ or of type $(0, 1, \alpha+1)$ in Π_{∞} . Then the linear representation $T_{n-1}^*(\mathcal{K}_{\infty})$ is a $(0, \alpha)$ -geometry fully embedded in AG(n, q).
- 2. Let q be even, then the geometries HT_3 and HT_4^- are affine (0, 2)-geometries. The geometry HT_3 is fully embedded in AG(3, q), q even. The geometry HT_4^- , which is also denoted by TQ(4, q), is fully embedded in AG(4, q), q even. For a characterization theorem of the geometry HT_4^- , we refer to [1].

In both cases, every affine plane is of type I, II or IV. So there are no planes of type III.

3. In [5], a (0,2)-geometry $\mathcal{A}(O_{\infty})$ fully embedded in AG(3, q), q even, is constructed as follows. Let O_{∞} be an oval of Π_{∞} with nucleus n_{∞} . Choose a basis such that $\Pi_{\infty}: X_3 = 0$, $n_{\infty}(1,0,0,0)$ and (0,1,0,0), (0,0,1,0), $(1,1,1,0) \in O_{\infty}$. Let f be the o-polynomial such that

$$O_{\infty} = \{ (\rho, f(\rho), 1, 0) \mid \rho \in GF(q) \} \cup \{ (0, 1, 0, 0) \},$$

and for every affine point p(x, y, z, 1) let

$$O_{\infty}^{p} = \{ (y + zf(\rho) + \rho, f(\rho), 1, 0) \mid \rho \in GF(q) \} \cup \{ (z, 1, 0, 0) \}.$$

Let S_p be the set of lines through p and a point of O_{∞}^p . Let \mathcal{L} be the union of the sets S_p , for all affine points p. If O_{∞} is not a conic then $\mathcal{S}(\mathcal{L})$ is connected [5] and we put $\mathcal{A}(O_{\infty}) = \mathcal{S}(\mathcal{L})$. If O_{∞} is a conic then $\mathcal{S}(\mathcal{L})$ consists of two connected components, both of which are projectively equivalent with the geometry HT₃ [5]. Therefore we put $\mathcal{A}(O_{\infty}) = \operatorname{HT}_3$ if O_{∞} is a conic. In either case $\mathcal{A}(O_{\infty})$ is a (0, 2)-geometry with s = q - 1, t = q, fully embedded in AG(3, q). Every affine plane is a plane of type I, II or IV. So there are no planes of type III.

4. In [6], a (0, 2)-geometry $\mathcal{I}(n, q, e)$ fully embedded in AG(n, q), $n \ge 3$, q even, is constructed as follows. Let U be a hyperplane of AG(n, q). Choose a basis such that $\Pi_{\infty} : X_n = 0$ and $U : X_{n-1} = 0$. Let $e \in \{1, 2, ..., h-1\}$ be such that $\gcd(e, h) = 1$, and let φ be the collineation of PG(n, q) such that

$$\varphi: p(x_0, x_1, \dots, x_{n-1}, x_n) \mapsto p^{\varphi}(x_0^{2^e}, x_1^{2^e}, \dots, x_n^{2^e}, x_{n-1}^{2^e}).$$

Put $U_{\infty} = U \cap \Pi_{\infty}$ and let \mathcal{K}_{∞} be the set of points of U_{∞} fixed by φ . Then \mathcal{K}_{∞} is the point set of a projective geometry $\operatorname{PG}(n-2,2) \subseteq U_{\infty}$. Let \mathcal{L} be the set of affine lines L such that either $L \subseteq U$ and $L \cap \Pi_{\infty} \in \mathcal{K}_{\infty}$, or L intersects U in an affine point p and L intersects Π_{∞} in the point p^{φ} . Then $\mathcal{I}(n,q,e) = \mathcal{S}(\mathcal{L})$ is a (0,2)-geometry with $s=q-1, t=2^{n-1}-1$, fully embedded in $\operatorname{AG}(n,q)$.

The hyperplane U has the property that, for every affine plane π containing two intersecting lines of $\mathcal{I}(n,q,e)$, π is of type III if $\pi\subseteq U$ and π is of type IV if $\pi\not\subseteq U$. In particular, if n=3, then U is the only plane of type III.

- 5. A dual oval with nucleus the line at infinity is a trivial (0, 2)-geometry fully embedded in AG(2, q), q even.
- 6. Any point set of AG(n, 2) gives rise to a trivial (0, 2)-geometry fully embedded in AG(n, 2).

7. The classification of connected line sets of antiflag class $[0, \alpha, q]$ in AG(3, q)

Let \mathcal{L} be a line set of AG(n,q) of antiflag class $[0,\alpha,q]$. Without loss of generality, we may assume that \mathcal{L} is not contained in a hyperplane of AG(n,q) and that \mathcal{L} is connected. By Theorems 5.1 and 4.1, we may assume that \mathcal{L} is nonsingular and that there is a plane of type IV. Hence $\alpha=2$ and $q=2^h$. As explained in the former section, the connected affine line sets of antiflag type $(0,\alpha)$ are classified, hence we may assume that there exists an antiflag $\{p,L\}$ such that $\alpha(p,L)=q$, i.e., we may assume that there is at least one plane of type V.

The next step towards a complete classification of affine line sets of antiflag class $[0, \alpha, q]$ is to find connected line sets or geometries fully embedded in AG(3, q), of antiflag type (0, 2, q), $q = 2^h$, h > 1, such that there is at least a plane of type IV and one of type V.

Theorem 7.1. A nonsingular connected line set of AG(3, q), $q = 2^h$, h > 1, of antiflag type (0, 2, q), such that there is a plane of type IV and a plane of type V, does not exist.

Proof. Suppose that such a set \mathcal{L} does exist. Let π_1 be a plane of type V. Suppose that no plane intersecting π_1 in an affine line, is of type V. Let π be a plane parallel to but distinct from π_1 . We prove that π is of type V.

Let m be the number of points of $\mathcal{S}(\mathcal{L})$ on π . Then m > 0 since otherwise every line of \mathcal{L} is parallel to π , a contradiction. Let p be a point of $\mathcal{S}(\mathcal{L})$ in π , and let S_1 be the set of affine points of π_1 that are collinear to p in $\mathcal{S}(\mathcal{L})$. Then S_1 is a point set of type (0, 2, q) in π_1 . If there is an affine line $L \subseteq \pi_1$ containing q points of S_1 , then the plane $\langle p, L \rangle$ is of type V, a contradiction. So S_1 is a point set of type (0, 2), and so it is a hyperoval $(S_1 \neq \emptyset \text{ since } \theta_p \text{ spans } \Pi_{\infty})$.

By Corollary 3.2, $\mathcal{S}(\mathcal{L})$ has an order (q-1,t). Every point of $\mathcal{S}(\dot{\mathcal{L}})$ in π is contained in precisely q+2 lines of \mathcal{L} which intersect π_1 in an affine point. Counting the lines of \mathcal{L} which intersect π and π_1 in an affine point yields $m(q+2)=q^2(t-q)$. It follows that $\frac{1}{2}q+1\mid t-q$. As $0< m\leq q^2$, there are only two possibilities.

1. $t - q = \frac{1}{2}q + 1$. Then every point of $\mathcal{S}(\mathcal{L})$ in π is contained in precisely $t + 1 - (q + 2) = \frac{1}{2}q$ lines of \mathcal{L}_{π} . Hence q = 4 and π is a plane of type IV. But this contradicts $m = \frac{1}{2}q^2$.

2. t-q=q+2. Then every point of $\mathcal{S}(\mathcal{L})$ in π is contained in precisely t+1-(q+2)=q+1 lines of \mathcal{L}_{π} , and $m=q^2$. Hence π is a plane of type V.

It follows that every plane parallel to π_1 is of type V. But this contradicts the fact that there is a plane of type IV. We conclude that there is a plane π_2 of type V which intersects π_1 in an affine line L_0 .

Let $p_{\infty} = L_0 \cap \Pi_{\infty}$. Let L be a line of \mathcal{L} which intersects π_1 and π_2 in distinct affine points p_1 and p_2 respectively. We prove that the plane $\pi = \langle L, p_{\infty} \rangle$ is of type V. Let S_1 denote the set of affine points of π_1 that are collinear to p_2 in $\mathcal{S}(\mathcal{L})$. Then S_1 is a point set of type (0, 2, q) which contains p_1 and the affine points of L_0 . Hence either S_1 is the set of all affine points of π_1 , or S_1 consists of the affine points of the lines L_0 and $L_1 = \langle p_1, p_{\infty} \rangle$. In both cases, π is a plane of type V.

Let π' be a plane through L, not parallel to the line L_0 . Then π' contains three nonconcurrent lines of \mathcal{L} , namely L, $\pi' \cap \pi_1$ and $\pi' \cap \pi_2$. So π' is of type III, IV or V. Now applying the same reasoning as above, one can prove that for every line $L' \in \mathcal{L}_{\pi'}$, the plane $\langle L', p_{\infty} \rangle$ is of type V, and hence that p_{∞} is a singular point of \mathcal{L} . But this contradicts our assumption that \mathcal{L} is nonsingular. \square

Theorem 7.2. Let \mathcal{L} be a connected line set of AG(3, q) of antiflag class $[0, \alpha, q]$, $1 < \alpha < q - 1$. Then one of the following cases occurs.

- 1. $q=2^h$, $\alpha=2$ and $\mathcal L$ is the line set of the geometry $\mathcal A(O_\infty)$ (we recall that $\operatorname{HT}_3=\mathcal A(O_\infty)$, O_∞ a conic).
- 2. $q = 2^h$, $\alpha = 2$ and \mathcal{L} is the line set of the geometry $\mathcal{I}(3, q, e)$.
- 3. \mathcal{L} is the line set of a linear representation $T_2^*(\mathcal{K}_{\infty})$, with \mathcal{K}_{∞} a nonsingular point set of class $[0, 1, \alpha + 1, q + 1]$ in Π_{∞} .
- 4. \mathcal{L} is the singular line set with vertex a point $p_{\infty} \in \Pi_{\infty}$ and base a planar net in an affine plane skew to p_{∞} .
- 5. $q=2^h$, $\alpha=2$ and $\mathcal L$ is the singular line set with vertex a point $p_\infty\in\Pi_\infty$ and base a dual oval in an affine plane skew to p_∞ .
- 6. \mathcal{L} is the set of all lines of AG(3, q).

Proof. This follows immediately from Theorems 4.1 and 5.1, from Section 6 and from Theorem 7.1. \Box

Towards the complete classification

In a forthcoming paper [3] we will provide a complete classification of connected affine partial linear spaces of antiflag class [0, 2, q] that are not linear representations of point sets of class [0, 1, 3, q + 1] in the space at infinity Π_{∞} .

Acknowledgment

This research was supported by a BOF ("Bijzonder Onderzoeksfonds") grant at Ghent University.

References

[1] M.R. Brown, F. De Clerck, M. Delanote, Affine semipartial geometries and projections of quadrics, J. Combin. Theory Ser. A 103 (2) (2003) 281–289.

- [2] F. De Clerck, N. De Feyter, J.A. Thas, Affine embeddings of (0, α)-geometries, European J. Combin. 27 (2006) 74–78.
- [3] F. De Clerck, N. De Feyter, A new characterization of projections of quadrics in finite projective spaces of even characteristic, 2006. Preprint.
- [4] F. De Clerck, M. Delanote, On (0, α)-geometries and dual semipartial geometries fully embedded in an affine space, Des. Codes Cryptogr. 32 (2004) 103–110.
- [5] N. De Feyter, The embedding in AG(3, q) of (0, 2)-geometries with no planar nets, J. Combin. Theory Ser. A 109 (1) (2005) 1–23.
- [6] N. De Feyter, The embedding in AG(3, q) of (0, 2)-geometries containing a planar net, Discrete Math. 292 (2005) 45–54.
- [7] N. De Feyter, The embedding of (0, 2)-geometries and semipartial geometries in AG(n, q), Adv. Geom. 5 (2005) 279–292.